Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Natural phyto, compounds as possible noncovalent inhibitors against SARS-CoV2 protease: computational approach.

Identifieur interne : 000F39 ( Main/Exploration ); précédent : 000F38; suivant : 000F40

Natural phyto, compounds as possible noncovalent inhibitors against SARS-CoV2 protease: computational approach.

Auteurs : Joyce Oloaigbe Ogidigo [Nigeria] ; Emmanuel A. Iwuchukwu [Afrique du Sud] ; Collins U. Ibeji [Afrique du Sud, Nigeria] ; Okiemute Okpalefe [Nigeria] ; Mahmoud E S. Soliman [Afrique du Sud]

Source :

RBID : pubmed:33103616

Abstract

At present, there is no cure or vaccine for the devastating new highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has affected people globally. Herein, we identified potent phytocompounds from two antiviral plants Momordica charantia L. and Azadirachta indica used locally for the treatment of viral and parasitic infections. Structure-based virtual screening and molecular dynamics (MD) simulation have been employed to study their inhibitory potential against the main protease (Mpro) SARS-CoV-2. A total of 86 compounds from M. charantia L. and A. indica were identified. The top six phytocompounds; momordicine, deacetylnimninene, margolonone, momordiciode F2, nimbandiol, 17-hydroxyazadiradione were examined and when compared with three FDA reference drugs (remdesivir, hydroxychloroquine and ribavirin). The top six ranked compounds and FDA drugs were then subjected to MD simulation and pharmacokinetic studies. These phytocompounds showed strong and stable interactions with the active site amino acid residues of SARS-CoV-2 Mpro similar to the reference compound. Results obtained from this study showed that momordicine and momordiciode F2 exhibited good inhibition potential (best MMGBA-binding energies; -41.1 and -43.4 kcal/mol) against the Mpro of SARS-CoV-2 when compared with FDA reference anti-viral drugs (Ribavirin, remdesivir and hydroxychloroquine). Per-residue analysis, root mean square deviation and solvent-accessible surface area revealed that compounds interacted with key amino acid residues at the active site of the enzyme and showed good system stability. The results obtained in this study show that these phytocompounds could emerge as promising therapeutic inhibitors for the Mpro of SARS-CoV-2. However, urgent trials should be conducted to validate this outcome. Communicated by Ramaswamy H. Sarma.

DOI: 10.1080/07391102.2020.1837681
PubMed: 33103616
PubMed Central: PMC7596894


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Natural phyto, compounds as possible noncovalent inhibitors against SARS-CoV2 protease: computational approach.</title>
<author>
<name sortKey="Ogidigo, Joyce Oloaigbe" sort="Ogidigo, Joyce Oloaigbe" uniqKey="Ogidigo J" first="Joyce Oloaigbe" last="Ogidigo">Joyce Oloaigbe Ogidigo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bio-resources Development Centre, National Biotechnology Development Agency, Abuja, Nigeria.</nlm:affiliation>
<country xml:lang="fr">Nigeria</country>
<wicri:regionArea>Bio-resources Development Centre, National Biotechnology Development Agency, Abuja</wicri:regionArea>
<wicri:noRegion>Abuja</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Genetics, Genomics and Bioinformatics Department, National Biotechnology Development Agency, Abuja, Nigeria.</nlm:affiliation>
<country xml:lang="fr">Nigeria</country>
<wicri:regionArea>Genetics, Genomics and Bioinformatics Department, National Biotechnology Development Agency, Abuja</wicri:regionArea>
<wicri:noRegion>Abuja</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu, Nigeria.</nlm:affiliation>
<country xml:lang="fr">Nigeria</country>
<wicri:regionArea>Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu</wicri:regionArea>
<wicri:noRegion>Enugu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Iwuchukwu, Emmanuel A" sort="Iwuchukwu, Emmanuel A" uniqKey="Iwuchukwu E" first="Emmanuel A" last="Iwuchukwu">Emmanuel A. Iwuchukwu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Durban, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Durban</wicri:regionArea>
<wicri:noRegion>Durban</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ibeji, Collins U" sort="Ibeji, Collins U" uniqKey="Ibeji C" first="Collins U" last="Ibeji">Collins U. Ibeji</name>
<affiliation wicri:level="1">
<nlm:affiliation>Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban</wicri:regionArea>
<wicri:noRegion>Durban</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.</nlm:affiliation>
<country xml:lang="fr">Nigeria</country>
<wicri:regionArea>Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State</wicri:regionArea>
<wicri:noRegion>Enugu State</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Okpalefe, Okiemute" sort="Okpalefe, Okiemute" uniqKey="Okpalefe O" first="Okiemute" last="Okpalefe">Okiemute Okpalefe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu, Nigeria.</nlm:affiliation>
<country xml:lang="fr">Nigeria</country>
<wicri:regionArea>Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu</wicri:regionArea>
<wicri:noRegion>Enugu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Soliman, Mahmoud E S" sort="Soliman, Mahmoud E S" uniqKey="Soliman M" first="Mahmoud E S" last="Soliman">Mahmoud E S. Soliman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Durban, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Durban</wicri:regionArea>
<wicri:noRegion>Durban</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33103616</idno>
<idno type="pmid">33103616</idno>
<idno type="doi">10.1080/07391102.2020.1837681</idno>
<idno type="pmc">PMC7596894</idno>
<idno type="wicri:Area/Main/Corpus">000947</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000947</idno>
<idno type="wicri:Area/Main/Curation">000947</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000947</idno>
<idno type="wicri:Area/Main/Exploration">000947</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Natural phyto, compounds as possible noncovalent inhibitors against SARS-CoV2 protease: computational approach.</title>
<author>
<name sortKey="Ogidigo, Joyce Oloaigbe" sort="Ogidigo, Joyce Oloaigbe" uniqKey="Ogidigo J" first="Joyce Oloaigbe" last="Ogidigo">Joyce Oloaigbe Ogidigo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bio-resources Development Centre, National Biotechnology Development Agency, Abuja, Nigeria.</nlm:affiliation>
<country xml:lang="fr">Nigeria</country>
<wicri:regionArea>Bio-resources Development Centre, National Biotechnology Development Agency, Abuja</wicri:regionArea>
<wicri:noRegion>Abuja</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Genetics, Genomics and Bioinformatics Department, National Biotechnology Development Agency, Abuja, Nigeria.</nlm:affiliation>
<country xml:lang="fr">Nigeria</country>
<wicri:regionArea>Genetics, Genomics and Bioinformatics Department, National Biotechnology Development Agency, Abuja</wicri:regionArea>
<wicri:noRegion>Abuja</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu, Nigeria.</nlm:affiliation>
<country xml:lang="fr">Nigeria</country>
<wicri:regionArea>Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu</wicri:regionArea>
<wicri:noRegion>Enugu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Iwuchukwu, Emmanuel A" sort="Iwuchukwu, Emmanuel A" uniqKey="Iwuchukwu E" first="Emmanuel A" last="Iwuchukwu">Emmanuel A. Iwuchukwu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Durban, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Durban</wicri:regionArea>
<wicri:noRegion>Durban</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ibeji, Collins U" sort="Ibeji, Collins U" uniqKey="Ibeji C" first="Collins U" last="Ibeji">Collins U. Ibeji</name>
<affiliation wicri:level="1">
<nlm:affiliation>Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban</wicri:regionArea>
<wicri:noRegion>Durban</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.</nlm:affiliation>
<country xml:lang="fr">Nigeria</country>
<wicri:regionArea>Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State</wicri:regionArea>
<wicri:noRegion>Enugu State</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Okpalefe, Okiemute" sort="Okpalefe, Okiemute" uniqKey="Okpalefe O" first="Okiemute" last="Okpalefe">Okiemute Okpalefe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu, Nigeria.</nlm:affiliation>
<country xml:lang="fr">Nigeria</country>
<wicri:regionArea>Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu</wicri:regionArea>
<wicri:noRegion>Enugu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Soliman, Mahmoud E S" sort="Soliman, Mahmoud E S" uniqKey="Soliman M" first="Mahmoud E S" last="Soliman">Mahmoud E S. Soliman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Durban, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Durban</wicri:regionArea>
<wicri:noRegion>Durban</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of biomolecular structure & dynamics</title>
<idno type="eISSN">1538-0254</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">At present, there is no cure or vaccine for the devastating new highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has affected people globally. Herein, we identified potent phytocompounds from two antiviral plants
<i>Momordica charantia</i>
L. and
<i>Azadirachta indica</i>
used locally for the treatment of viral and parasitic infections. Structure-based virtual screening and molecular dynamics (MD) simulation have been employed to study their inhibitory potential against the main protease (M
<sup>pro</sup>
) SARS-CoV-2. A total of 86 compounds from
<i>M. charantia</i>
L. and
<i>A. indica</i>
were identified. The top six phytocompounds; momordicine, deacetylnimninene, margolonone, momordiciode F2, nimbandiol, 17-hydroxyazadiradione were examined and when compared with three FDA reference drugs (remdesivir, hydroxychloroquine and ribavirin). The top six ranked compounds and FDA drugs were then subjected to MD simulation and pharmacokinetic studies. These phytocompounds showed strong and stable interactions with the active site amino acid residues of SARS-CoV-2 Mpro similar to the reference compound. Results obtained from this study showed that momordicine and momordiciode F2 exhibited good inhibition potential (best MMGBA-binding energies; -41.1 and -43.4 kcal/mol) against the M
<sup>pro</sup>
of SARS-CoV-2 when compared with FDA reference anti-viral drugs (Ribavirin, remdesivir and hydroxychloroquine). Per-residue analysis, root mean square deviation and solvent-accessible surface area revealed that compounds interacted with key amino acid residues at the active site of the enzyme and showed good system stability. The results obtained in this study show that these phytocompounds could emerge as promising therapeutic inhibitors for the M
<sup>pro</sup>
of SARS-CoV-2. However, urgent trials should be conducted to validate this outcome. Communicated by Ramaswamy H. Sarma.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33103616</PMID>
<DateRevised>
<Year>2021</Year>
<Month>05</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1538-0254</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Journal of biomolecular structure & dynamics</Title>
<ISOAbbreviation>J Biomol Struct Dyn</ISOAbbreviation>
</Journal>
<ArticleTitle>Natural phyto, compounds as possible noncovalent inhibitors against SARS-CoV2 protease: computational approach.</ArticleTitle>
<Pagination>
<MedlinePgn>1-18</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/07391102.2020.1837681</ELocationID>
<Abstract>
<AbstractText>At present, there is no cure or vaccine for the devastating new highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has affected people globally. Herein, we identified potent phytocompounds from two antiviral plants
<i>Momordica charantia</i>
L. and
<i>Azadirachta indica</i>
used locally for the treatment of viral and parasitic infections. Structure-based virtual screening and molecular dynamics (MD) simulation have been employed to study their inhibitory potential against the main protease (M
<sup>pro</sup>
) SARS-CoV-2. A total of 86 compounds from
<i>M. charantia</i>
L. and
<i>A. indica</i>
were identified. The top six phytocompounds; momordicine, deacetylnimninene, margolonone, momordiciode F2, nimbandiol, 17-hydroxyazadiradione were examined and when compared with three FDA reference drugs (remdesivir, hydroxychloroquine and ribavirin). The top six ranked compounds and FDA drugs were then subjected to MD simulation and pharmacokinetic studies. These phytocompounds showed strong and stable interactions with the active site amino acid residues of SARS-CoV-2 Mpro similar to the reference compound. Results obtained from this study showed that momordicine and momordiciode F2 exhibited good inhibition potential (best MMGBA-binding energies; -41.1 and -43.4 kcal/mol) against the M
<sup>pro</sup>
of SARS-CoV-2 when compared with FDA reference anti-viral drugs (Ribavirin, remdesivir and hydroxychloroquine). Per-residue analysis, root mean square deviation and solvent-accessible surface area revealed that compounds interacted with key amino acid residues at the active site of the enzyme and showed good system stability. The results obtained in this study show that these phytocompounds could emerge as promising therapeutic inhibitors for the M
<sup>pro</sup>
of SARS-CoV-2. However, urgent trials should be conducted to validate this outcome. Communicated by Ramaswamy H. Sarma.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ogidigo</LastName>
<ForeName>Joyce Oloaigbe</ForeName>
<Initials>JO</Initials>
<AffiliationInfo>
<Affiliation>Bio-resources Development Centre, National Biotechnology Development Agency, Abuja, Nigeria.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Genetics, Genomics and Bioinformatics Department, National Biotechnology Development Agency, Abuja, Nigeria.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu, Nigeria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Iwuchukwu</LastName>
<ForeName>Emmanuel A</ForeName>
<Initials>EA</Initials>
<AffiliationInfo>
<Affiliation>Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Durban, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ibeji</LastName>
<ForeName>Collins U</ForeName>
<Initials>CU</Initials>
<AffiliationInfo>
<Affiliation>Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Okpalefe</LastName>
<ForeName>Okiemute</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu, Nigeria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Soliman</LastName>
<ForeName>Mahmoud E S</ForeName>
<Initials>MES</Initials>
<AffiliationInfo>
<Affiliation>Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Durban, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Biomol Struct Dyn</MedlineTA>
<NlmUniqueID>8404176</NlmUniqueID>
<ISSNLinking>0739-1102</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">MMGBA</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="N">molecular dynamics simulations</Keyword>
<Keyword MajorTopicYN="N">natural phytocompounds</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>8</Hour>
<Minute>42</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33103616</ArticleId>
<ArticleId IdType="doi">10.1080/07391102.2020.1837681</ArticleId>
<ArticleId IdType="pmc">PMC7596894</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Molecules. 2009 Nov 25;14(12):4804-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20032860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2016 Jul;123:42-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26993255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2013 Jul 9;9(7):3084-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26583988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Drug Discov. 2007 Apr;2(4):469-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23484756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Apr 24;368(6489):409-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32198291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Struct Dyn. 2021 Apr;39(7):2607-2616</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32238094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Inf Model. 2015 Feb 23;55(2):460-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25558886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2019 Mar;187(3):1061-1080</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30155742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharm. 2018 Mar 5;15(3):831-839</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29337562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jul 2;46(W1):W257-W263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29718510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Mar;579(7798):265-269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32015508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Mar;579(7798):270-273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32015507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2017 May 25;121(20):5228-5237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28453293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Drug Discov. 2019 Apr;14(4):335-341</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30806519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mar Drugs. 2017 Nov 27;15(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29186912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Today Technol. 2004 Dec;1(4):337-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24981612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Aided Mol Des. 2013 Mar;27(3):221-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23579614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2002 Jun 6;45(12):2615-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12036371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2018 Aug 9;61(15):6401-6420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29589935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2006 Oct 19;49(21):6177-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17034125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2004 Nov 15;57(3):493-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15382241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 Apr;92(4):401-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31950516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2020 Apr 16;181(2):281-292.e6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32155444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Inf Model. 2014 May 27;54(5):1552</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24702057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2014 Sep 18;21(9):1115-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25237858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Comput Biol Drug Des. 2013;6(1-2):146-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23428480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biodivers. 2019 Jun;16(6):e1900085</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30990952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Saudi Pharm J. 2016 Jan;24(1):104-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26903774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Hypotheses. 2019 Sep;130:109277</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31383337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2015 Oct 13;11(10):4770-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26574266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11259830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Drug Discov. 2015 May;10(5):449-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25835573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Med Chem. 2009;16(1):21-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19149561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2000 Oct 5;43(20):3714-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11020286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci. 2020 Jul 15;253:117592</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32222463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2014 Feb;13(2):105-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24481311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Biophys J. 2014 May;43(4-5):199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24687685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Regul Toxicol Pharmacol. 2013 Jun;66(1):88-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23524271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evid Based Complement Alternat Med. 2013;2013:729081</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2009 Nov 15;30(14):2165-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19242965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Today. 2006 May;11(9-10):446-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16635808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2015;1282:1-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25720466</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Afrique du Sud</li>
<li>Nigeria</li>
</country>
</list>
<tree>
<country name="Nigeria">
<noRegion>
<name sortKey="Ogidigo, Joyce Oloaigbe" sort="Ogidigo, Joyce Oloaigbe" uniqKey="Ogidigo J" first="Joyce Oloaigbe" last="Ogidigo">Joyce Oloaigbe Ogidigo</name>
</noRegion>
<name sortKey="Ibeji, Collins U" sort="Ibeji, Collins U" uniqKey="Ibeji C" first="Collins U" last="Ibeji">Collins U. Ibeji</name>
<name sortKey="Ogidigo, Joyce Oloaigbe" sort="Ogidigo, Joyce Oloaigbe" uniqKey="Ogidigo J" first="Joyce Oloaigbe" last="Ogidigo">Joyce Oloaigbe Ogidigo</name>
<name sortKey="Ogidigo, Joyce Oloaigbe" sort="Ogidigo, Joyce Oloaigbe" uniqKey="Ogidigo J" first="Joyce Oloaigbe" last="Ogidigo">Joyce Oloaigbe Ogidigo</name>
<name sortKey="Okpalefe, Okiemute" sort="Okpalefe, Okiemute" uniqKey="Okpalefe O" first="Okiemute" last="Okpalefe">Okiemute Okpalefe</name>
</country>
<country name="Afrique du Sud">
<noRegion>
<name sortKey="Iwuchukwu, Emmanuel A" sort="Iwuchukwu, Emmanuel A" uniqKey="Iwuchukwu E" first="Emmanuel A" last="Iwuchukwu">Emmanuel A. Iwuchukwu</name>
</noRegion>
<name sortKey="Ibeji, Collins U" sort="Ibeji, Collins U" uniqKey="Ibeji C" first="Collins U" last="Ibeji">Collins U. Ibeji</name>
<name sortKey="Soliman, Mahmoud E S" sort="Soliman, Mahmoud E S" uniqKey="Soliman M" first="Mahmoud E S" last="Soliman">Mahmoud E S. Soliman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F39 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F39 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33103616
   |texte=   Natural phyto, compounds as possible noncovalent inhibitors against SARS-CoV2 protease: computational approach.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33103616" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021